N87-25893

A EVALLATION OF TURBO PROLGG
I TH &N EMPHESIS 0N TS APPLICATION TO THE DEYELOPMENT
OF EXPERT SYSTEMS

Richard B. Lothn, Ph.D.
Associate Professor of Physics
Department of Matural Sciences

University of Houston- Downtown
One Main Straet
Houston, TX 77002

Turbe Proleg is a recently-available, compiled version of the programming language Frolog
{Pragramming in Logic}, originally developed at the University of Marseilles in the period
fram 1972 40 1974, Turba Prolog is designed to provide not only s Prolog compiler, but glse g
program develapment environment for the |BM Personal Computer family.

an zvalugtion of Turbo Prolog was made, comparing its festures to other versions of Frojogand
to the cormmunity of languages comnmonly used in artificial intelligence {Al) research and
development. Three programs were employed to determine the execution speed of Turbo Prolog
applied to various problems: (1) a program which computes the factorial of a given integer
was ysed to test the execution speed of Turbo Prolog with a purely computational problem, (2)
the “Towers of Hanoi" was used to evaluate the speed of Turbo Prolog in executing a simple but
intensely-recursive problem, and {3) the NASA benchmark planning probiem {the "monkey
and bananas” prablem) was used to test the speed of Turbo Proleg with a problem used by HAZA
inits own evaluation tests '

The results of thiz evaluation demonstrated that Turbo Proleg can perform much betier than
many commmonly-employed Al languages for numerically- intensive problems and can equal the
speed of development lanquages 2uch as OPSS+ and CLIPS, running on the IBM PC family of
computers, with the NASA berchmark program. Applications for which Turte Projog is best
suited include those which {13 lend themselves naturally to bacikwsrd-chaining spproaches
{ &g, thenrem aroving), {20 require exiensive use af mathematics, (30 contain few rules, (4]
seek to make use of the windowing/color graphics capabilities of the 1BM PO, and/or (50
require linkage to programs in ather languages (&g, C, Fascal, FORTRAM, or Asserblers o
form a complete executable image.

16.0. Riley, “Timing Tests of Expert System Building Tools™ and "Awvailability of an Expert
System Tool™, NASA Memos FM7{86-51) and FM7(86-117).

MASE Collesque: Robert T.Savely FM3?2 X4751

23-2

AM EVALUATICN OF TURBO PROLOG
WITH AN EMPHASIS OM ITS APPLICATION TO THE DEVELGPMENT
OF EXPERT SYSTEMS

Richard B. Loftin, Ph.D.
Associate Professor of Physics
Department of Natural Sciences
University of Houston-Downtown

One Main Street
Houston, TX 77002

introduction

Two of the tasks of the Artificial intelligence (Al) Section of
the Technology Development and Applications Branch, iMission Support
Directorate, Johnson Space Center, are (1) the evaluation and deveiopment
of Al software for building expert systems and (2) the evaluation of Al
languages. A recently-available product (May, 1986), Turbo Prolog’
offers both a new version of an Al language and a programming
environment for building expert systems. The goals of the project
described in this report were (1) the evaluation of Turbo Proiog as an Al
language and (2) the production of benchmark programs, written in Turbo
Prolog, which permit Turbo Prolog's execution speed to be direc t!v
compared with that of alternatives already evaluated by the Al Secti on<.

in order to achieve the first goal, time was devoted to a study
of Turbo Prolog in the context of other versions of Prolog and the
development of simple programs using this language. Two simple tests of
Turbo Prolog's execution speed were made using the computation of
factorials and the Towers of Hanoi. The final benchmark program was of
the standard type used by the Al Section in_evaluating the speed of a
number of expert system development toolsS. The problem is one of
proceeding to a prescribed goal by means of subgoals which must be
achieved first. Initial conditions are supplied and approximately thirty
rules specify the manner in which the subgoals and the final goal may be
satisfied. This benchmark has been written and implemented in a variety

23-3

of languages on a variety of computers. By comparing the speed with
which this benchmark program executes when written in Turbo Prolog
with the same benchmark in different programming languages running on
the same computer, a measure of Turbo Prolog's efficacy as a language for
the development of expert systems can be had.

This report begins by discussing the history of Prolog and
continues by presenting the major features of Turbo Prolog, emphasizing
those which set it apart from other versions of the language. Finally, the
benchmark timing results are presented and come conclusions are drawn
regarding the use of Turbo Prolog as a tool in the development of expert
systems.

A Brief History of Proiog

The origins of Prolog (Programming in Logic) can be traced back
to the 1965 publication of the Resolution Principle by J. A Robinson?.
During the early 1970's a number of workers attempted to implement
languages that embodied logic>:8:7.8.9,10 kowalski's development of
predicate calculus in 1972' ! added a powerful tool to the kits of those
seeking to produce languages that were oriented toward theorem proving.
It was the collaborative efforts of R. A. Kowalski and Alain Coimerauer
during the year Kowalski spent at the University of Marseilles that led to
the development of Prolog's specifications 12 in 1972. Colmerauer and his
coworkers at Marseilles quickly began to implement these specifications
and produced the first interpreters in 1973 '3»'4. With the detailed
publication of Prolog's specifications in and of its implementation in
1975'5, other university groups began to use the "Marseilles” Prolog and
began to develop their own Prolog versions!017.18,19.20 1t was the
publication of Programming in Prolog by Clocksin and Mellish in 198121
that brought some order to the proliferation of dialects of Prolog. By
1984, with the appearance of the second edition of Clocksin and

Melh’sh22, most users of Prolog were accustomed to a common syntax and
grammar for the language.

The announcement by Japan in 198223 that Prolog would be the

23-4

ORIGINAL PAGE 18
OF POOR 1y ALITY

language for their "fifth-generation” project catapulted Prolog, untii that
time a prederninantly European institution, into internationai prorinences
Until recently most US. Al practitioners have eschewed the use of Prolog
in favor of Lisp, in large measure due the the availability of powerful
development environments for Lisp machines. The advent of Turbo Prolog
may well serve to introduce Prolog into the "mainstrearn” of cormputing in
the U.S. It provides a powerful and inexpensive (<$100) developrnent
environment for Prolog utilizing an extremely popular personal computer
farnily--the IBM PC/XT/AT).

Features of Turbo Prolog

Naturally, the feature that sets Turbo Prolog (and, for that
matter) all Prologs apart from other Al languages iz its
backward-chaining nature. Most commonly used expert system
developrent tools are implemented with forward-chaining, although
some, like KEE and ART, can employ backward-chaingin also. At first
glance Turbo Prolog seems to have embraced the syntax and functionality
of the "standard” set by Clocksin and Mellish22. Syntactically, this is
more "almost” correct. Important differences exist, however, which are
pitfalls for the experienced Prolog programmer. One essential difference
(from which flows many “subdifferences”) is the typed nature of the
Turbo Prolog compiler. In this instance Turbo Prolog resembles FORTRAN
or Pascal--each domain's type must be declared, either in the "domain”
section or in the declaration of a predicate. This single feature sets
Turbo Prolog apart from other versions of Prolog and from most other Al
languages in gereral. it is both 2 weakness and a strength. There is no
doubt that much of the speed and error checking power of the compiier is
due to domain typing. Experienced Al programmers are not accustomed fo
a requirement that domains be typed. It is common to have functors, for
example, whose arguments may change from integer to real as a result of
a clause. In Turbo Prolog this means that each possibie argument type
must be declared at the time the program is written. Additional "deltas”
with other Prolog versions also exist. For example, =" is not the
unification operator of Clocksin and Mellish, rather it is more like the "ig”
operator; commas do not act as operators; the programmer cannot define
- his own infix operators; the resuit of an arithmetic operation depends on

23-5

the type(s) of the arquments; operators cannot be passed as functors, and
rmissing are the standard predicates arg, functor, clause, univ, and op.
Turbo Prolog unfortunately lacks a virtual database support and database
predicates are not executable.

Figure 1 shows the structure of a Turbo Prolog program. The
elements that are enclosed in brackets are optional. The program section
is used if this program is to linked to others (written in Prolog, C,
FORTRAN, Pascal, or Assembler) to form an executable whole. The
directives section is used to issue orders to the compiler (for example,
invoking the trace facility or declaring the amount of memory to be
allocated to the code). The domains section is used to declare the types
of all predicate arguments (it may be omitted if there are no compound
nredicates and the type declaration can be included in the predicate
section). Global domains are used for those predicates that wiii be

PROLOG PROGRAM STRUCTURE
[PROGRAM]
[DIRECTIVES]

DOMAINS
[GLOBAL DOMAINS]
[DATABASE]
PREDICATES
[GLOBAL PREDICATES]
CLAUSES
[GOAL]

FIGURE 1: The Structure of a Turbo Prolog Program

23-6

ORIGINAL PAGE IS
OF POOR QUALITY

accessed by other programs linked to the present one and the database
section is used to identify those predicates that will be changed by
"assert” during program execution. The predicate section contains a list
of all predicates and their arguments and the global predicate section
serves the same function as the global domains section. Clauses are
listed in the clause section. Goals may be declared in the program itself.
If the goal section is missing, Turbo Prolog prompts the user for a goal in
the dialogue window.

In "giving” up some of the familiar features of other Prologs, the
user of Turbo Prolog does gain a great deal. Unlike most Al languages,
Turbe Prolog contains a complete set of arithmetic and trigonometric
operators. In addition, there are about thirty "new” standard predicates
that atlow the programrer to access the fuli range of power of the iEM
PC family. For example, Turbo Prolog contains a complete set of graphics
commands for the PC, including windowing and the ability to mix text and
graphics in the same window. Sound and color are both supported as well
as input/output via files, devices, or ports. Turbo Prolog allows the
programmer to link a prolog program to other programs written in C,
FORTRAN, Pascal, or Assembler. The prograrmmer (as well as the user of a
developed application) has full access to DQS, BIO3, and the built-in Turbo
editor. Perhaps the "nicest” thing provided by Turbo Prolog is a powerful
development environment, based on the PC, that is extraordinarily
inexpensive compared with those used by most Al programmers. The
development environment provides four windows (the user controls the
size and foreground/background color of each window): editor, diaiogue,
trace, and message. A banner menu is provided allowing the user to
select editor, run (compiles and runs), compile (allows the user o
compile to an object or executable file), options (selects whether the
compilation is to an object or executable file), setup (allows the user to
configure the windows, define directories, and perform other useful
"housekeeping” tasks) and quit (which returns the user to DOS). The editor
is a "full-window" editor and uses the commands of Wordstar. The
compiler, like that of Turbo Pascal, stops when an error in encountered,
returns to the programmer to the editor, and places the cursor at the
location of the error. The powerful trace facility allows the user to
examine every call and return for the entire program or for selected

23-7

clauses. All-in-all, Turbo Prolog is a pleasant way to quickly develop
executable code.

Benchmarks

Three benchmarks were chosen to measure the speed of
execution of a Turbo Prolog program in performing three very different
tasks. To test Turbo Prolog's execution speed with arithmetic operations,
a simple program was used to compute the factorial of an integer
(Appendix A contains the source code for this program). The program was
run on an IBM PC and an IBM PC/ATto compute the factorial of 170 (the
result of this computation is near the capacity of the PC). The time
required for this computation is shown in Table 1. The Towers of Hanoi
problem provides another benchmark program which is intensively
recursive and makes large demands on the stack (Appendix B contains the
source code for this program). The times required for the execution of
this program with different numbers of disks are also included in Table 1.

The final benchmark was chosen to permit the speed of Turbo
Prolog to be directly compared to that of other expert system toois in the
execution of a rule-based expert system. The problem tackled was a
variation of the well-known “monkey and bananas” problem24. This
particular variation was developed by the Al Section as a means of
comparing a large number of expert system development tools?3. The
general problem is prototypical of a number of planning problems in which
many subgoals must be identified and reached in order for the "main” goal
to be achieved.

The monkey and bananas program, as implemented in Turbo
Prolog (the source code for the program is contained in Appendix C)
consists of 34 "rules” in the form of clauses or subclauses. A total of 22
predicates were used. Table 2 contains the time required for execution of
this program on both the IBM PC and I1BM PC/AT. The table also contains
the accumulated timing tests obtained by the Al Section through the end
of July, 1986. It should be noted that there is some ambiguity in
determining the execution speed of a Turbo Prolog program. After
compilation is complete, but before execution begins, Turbo Prolog

23-8

TABLE 1. Execution Times for Two Benchmarks Using
Turbo Prolog (See Appendices for Source Code)

Execution Tirmes (g}
Benchmark
811 PC BM PLAAT
Factorial of 170 027 (LR RY
Towers of Hanoi
3 Disks L3005 -——
10 Disks 0.27 310
12 Disks 1.20 047
15 Disks 255 .40
16 Disks — .56

checks the program’'s clauses against the given goal(s). Those clauses
which will be called in order to reach the given goal(s) are selected
through this “preprocessing”. Only after this is accomplished is the goal
actually executed. This means that the internal time function can only be
accessed after the preprocessing is complete. Since the user is normally
and execution, it is this run time which is reported. A footnote gives the
measured execution times for the program running on both machines
tested.

conclusions

Turbo Prolog may be, in the view of at least one evaluator2>,
not so much another version of Prolog, as a new language in itself. Turbo
Prolog has proven to be exceptionally easy to begin to use and Borland has
“encased” it in an superb development environment. The syntax of the
language and its standard predicates depart significantly from the Prolog
"standard”; this may pose a barrier to the experienced Prolog programmer,

23-9

Table 2: Timing Tests of Expert System Tools for the NASA

"Monkey and Bananas” Benchrmark*

TOOL(VERSION)

ART(V2.0)
ART(V2.0)
ART(V2.0BETA)
ART **

ART(V BETA 3)

CLIPS(V3.0)
CLIPS(V3.0)
CLIESV3.O
CLIPS(V3.0)
CLIPS(V3.0)

ExperOPS5(V1.04)

KEE(V2.1.66)**
KEE(V2.2.66)

OPSS(VAX V2.0)
OPSS(FORGYVPS2)
0P35+(V2.0003)
OP3S5+(V2.0002)
OPS5+{V2.0002)

0PS83
ap383
0P3S83

TURBO PROLOG
TURBO PROLOG

*SOURCES (EXCEPT TURBO PROLOG): NASA MEMOS FM7(86-51) AND

FM7(86-117)

**|MPLEMENTED USING BACKWARD-CHAINING RULES
***"RUN TIME", EXECUTION TIMES are 0.215 AND 0.65 FOR PL/

MACHINE

SYMBOLICS

TI EXPLORER
LM

SYMBOLICS
VAX

SUN
VAX
HP9000
IBM PC/AT
1BiM PC

MACINTOSH

SYMBOLICS
SYMBOLICS

VAX
SYMBOLICS
I1BM PC/AT

MACINTOSH
1BM PC

VAX
1B PC/AT
18M PC

IBM PC/AT
1BM PC

23-10

TIME(S)

1.2
2.4
3.0
7.6
17

1.2
25
40
7.0
214

55
17.8
165

§
i.

1.7
5.2
14

10

“ - O
G - b
o3}

6.73%xx

20.43% %>

AT

N

i

i~

but others (especially fans of Turbo Pascal) will appreciate the "unigue”
features of Turbo Prolog. Those predicates which are missing from Turbo
Prolog are either seldom used or their function can be achieved in other
ways. The superb programming environment (convenient editor, powerful
trace facility, compiler, built-in mathematical functions, and access to
IBM PC features such as graphics, windows, color, sound, and 1/0 through
ports or files) coupled with its inexpensive cost makes Turbo Prolog an
attractive tool for those who have not tacklied an Al language before. For
those developing expert systems, Turbo Prolog may prove to be
well-suited for fast prototyping of “small” rule bases or for those
applications that lend themselves to backward-chaining approaches (for
example, theorem proving). Surprisingly, Turbo Prolog executes the NASA
benchmark as fast as'popular expert system development tools like OPS5+
or NASA's own CLIPS.

Appendices

The appendices mentioned in the body of this paper are not
included with the published report due to their length. Copies of these
appendices may be obtained directly from the author or from his
NASA/JSC colleague, Robert T. Savely (NASA/Johnson Space Center, Mail
Code FM72, Houston, TX 77058).

23-11

REFERENCES

. Turbo Prolog is a product of Borland International, inc., 4585 Scotts
Valley Drive, Scotts Valley, CA 95066.

. Gary D. Riley, "Timing Tests of Expert System Building Tools,” NASA/
Johnson Space Center, Memo FM7(86-51); Robert T. Savely, “Availability
of an Expert System Tool,” NASA/Johnson Space Center, Memo FM7/
(86-117).

. Gary D. Riley, "Benchmarking Expert System Tools," in Proceedings of
Robex ‘86 (The Second Annual Workshop on Robotics and Expert
Systems), held at NASA/Johnson Space Center, 4-6 June 1986, p. 61.

. J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution
Principle,” J. ACM 12(1), 23(1965).

. G. Sussman and D. V. McDermott, "MICRO-PLANNER Reference Manual,”
Al Memo 203, Al Laboratory, MIT, 1970.

. R. M. Burstall, J. S. Collins, and R. J. Popplestone, Programming in
POP-2, Edinburgh: Edinburgh University Press, 1971.

. C. Hewitt, "Description and Theoretical Analysis (using schemata) of
PLANNER, a Language for Proving Theorems and Manipulating Models in a
Robot,” Report No. TR-258, Al Laboratory, MIT, 1972.

. D.J. M. Davies, "POPLER: A POP-2 Planner,” Rep. No. MiP-89, School of
Al, University of Edinburgh, 1972.

. G. Sussman and D. V. McDermott, "CONNIVER Reference Manual,” Memo
259, Al Laboratory, MIT, 1972.

10. D. Davies, et. al., POPLER 1.5 Reference Manual, Edinburgh: University
of Edinburgh, 1973.

23-12

I'l.R. A Kowalski, "The Predicate Calculus as a Programming Language,” in
Proceedings of the International Symposium and Summer School on
Mathematical Foundations of Computer Science, held at Jabfonna,
Poland, 1972.

12. A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero, "Un Systéme de
Communication Homme-Machine en Frangais”, Rapport preliminaire,
Groupe d'Intelligence Artificielle, Université d'Aix-Marseille, 1972.

13. G. Battani and H. Meloni, "Interpréteur du langage de programmation
PROLOG," Group d'Intelligence Artificielie, Université d'Aix-Marseille,
1973.

14. A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero, "Un syst&me de
Communication Homme-Machine en Frangais,” Rapport de Rechereche
sur le contrat CRI no 72-18 de février 72 a juin 73, Groue d'intelligence
Artificielle, Université d’'Aix-Marseille, 1973.

15. P. Roussel, PROLOG, Manuel de Référence et d'Utilisation, Université
d'Aix-Marseille: Groupe d'intelligence Artificielle, 1975,

16. D. H. D. Warren, "Implementing Prolog--Compiling Predicate Logic
Programs,” DAl Report Nos. 39 and 40, Edinburgh, 1977.

17.D. H. D. Warren, L. M. Pereira, and F. C. N. Pereira, "Prolog--the Language
and Its Implementation Compared with Lisp,” presented at the ACM
Symposium on Artificial Inteliigence and Programming Languages,
Rochester, New York, SIGART Newsletter No. 64, SIGPLAN Notices
12(8), 109 (1977).

18. J. Bendl, P. Koves, and P. Szeredi, “The MPROLOG System," in Tarnlund
1980, 201 (1980).

19. F. G. McCabe, Micro PROLOG Programmer’s Reference Manual, London:
Logic Programming Associates Ltd., 1981.

23-13

20. F. KluZniak and S. Szpakowicz, Prolog, Warsaw: Wydawmcnwa
Naukowo-Techniczne, 1983.

21. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Berlin:
Springer-Verlag, 1981,

22. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Second Edition,
Berlin: Springer-Verlag, 1984.

23. "Outline of Research and Development Plans for Fifth Generation
Computer Systems,” Institute for New Generation Computer Technology
(ICOT), Tokyo, May, 1982.

24. L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert
Systems in OPSS, Reading, MA: Addison-Wesley Publishing Co., 1985.

25. D. Rubin, "Turbo PROLOG: A PROLOG Compiler for the PC Programmer,”
Al Expert, Premier Issue, 87 (1986).

23-14

